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SUMMARY

Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental

finite element procedure that simultaneously determines the stresses in and the contact region between

the meshing teeth. The teeth themselves are modeled by two-dimensional plane strain elements. Friction

effects are included, with the friction forces assumed to obey Coulomb's law. The analysis also assumes

that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure

is validated by comparing its results with those for the classical case of two contacting semicylinders

obtained from the Hertz method. Agreement is excellent.

INTRODUCTION

The life and performance of gear teeth are directly related to the ability of the teeth to withstand

contact stresses. Contact stresses may produce pitting within the contact area and eventually lead to

tooth failure. In spite of the importance of contact stresses in gears, comprehensive analyses of these

stresses have not been extensively reported in the literature. Indeed, most analyses are based upon

procedures that require simplified assumptions about the geometry of the contacting surfaces. Although
these assumptions are needed for the classical procedures, their use raises questions about the accuracy

and applicability of the results.

In this report we attempt to obtain a more representative and hence a more accurate analysis. The

method is based upon an incremental finite element procedure (an iterative technique) that simultane-

ously determines the stresses and the contact area. Our motivation for using the finite element method

(FEM) is based upon the success of the method in determining fillet stresses due to gear tooth bending

(refs. 1 and 2). Our motivation for using the incremental procedure is based upon the success of other

analysts in using it with contact analyses. For example, in 1970 Wilson and Parsons (ref. 3) used a dif-
ferential displacement method to study frictionless contact problems. This approach was later extended

by Ohte (ref. 4) to include frictional effects. In 1979 Okamoto and Nakazawa (ref. 5) presented the incre-

mentation technique. This technique was also presented at about the same time by Skinner and Streiner

(ref. 6) and by Urzua et al. (ref. 7). The technique was presented in automated form by Torstenfelt in

1984 (ref. 8).
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The incremental procedure enjoys a number of advantages over more traditional finite element pro-

cedures: Specifically, (1) no special elements, such as gap elements or contact elements, are needed;

(2) the calculated incremental loads follow the actual load history; (3) friction forces, once computed, are

treated as known tangential loads and thus the standard analysis procedures of the finite element method

remain intact; and (4) general-purpose finite element codes may readily be used in the analysis. In the

research described herein we apply the incremental finite element procedure to the special geometry of

involute spur gear teeth. The balance of this report presents the basic formulation of the method, the

automation of the method, a validation of the method, some results for spur gear contact stresses, and a

discussion and some concluding remarks.
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SYMBOLS

semilength of contact

elastic modulus

accuracy parameter

nodal force in contact region

column vector of nodal global forces

incremental global force vector

identity submatrix

global stiffness matrix

normal unit vector in contact region

pressure as function of x

maximum normal contact pressure

nodal reaction force in contact region

incremental nodal load vector

nonsquare transformation matrices

transformation matrix

tangential unit vector in contact region

nodal displacement in contact region

column vector of nodal global displacements

incremental global displacement vector

scale factors defined in equations (17), (18), and (20)

gap distance

nodal separation in contact region

coefficient of friction between contacting bodies

Poisson's ratio

normal stresses
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r shearstress

Subscriptsandsymbols:

a,b

i,i'

max

n,t

refers to bodies a and b

typical pair of contacting nodes

maximum

normal and tangential directions

represents matrix in local (n,t) coordinate system

METHOD FORMULATION

The incremental procedure is an application and natural extension of the basic finite element method:

Let the governing matrix equation for a finite element analysis be written as

{F} = [K]{U} (1)

where {F} is the column vector of nodal global forces, [K] is the global stiffness matrix, and {U} is

the column vector of nodal global displacements.

Consider a structure discretized into elements and nodes such that equation (1) relates the nodal
global forces and displacements. Let there be an increment in the nodal forces. Let these incremental

forces be designated by the column vector {AF}, and let the resulting incremental nodal global dis-
placements be designated by the vector (AU}. If the global geometry of the structure is essentially

unchanged by the force increment, the global stiffness matrix [K] is essentially unchanged. Hence, from
equation (1)thegoverning equation relating (AF} and (AU} is

{AF} = [K]{AU} (2)

To apply equation (2), consider two typical bodies A and B in contact over a surface C-C' as

depicted in figure 1. Let A and B be discretized into elements and nodes in the usual manner of finite

element analysis, except that in the contact region let each node on the surface of A have a correspond-

ing opposite, or mating, node on the surface of B (see fig. 1).

Consider a typical pair of mating, contacting nodes, i and i', as depicted in figure 2. Let t-n be

local Cartesian axes defining the "average" tangential and normal directions. Let (AR.n} and {ARjt }
(j -- a,b) represent incremental normal and tangential loadings on i and i'. Similarly,_et (AUjn)

and (AUjt } (j ---a,b) be the resulting incremental displacements.

The contact status can be categorized as being either (1) open, (2) closed and sticking, or (3) closed

and sliding. In each case the equilibrium and continuity conditions must be satisfied. That is,



(1) For open nodes (no contact)

(2)

{aUbn)- (AU_} < {6n)

{aRM) = {ARbn) = {0}

{ARat} = {ARbt} = {0}

For closed and sticking nodes (no relative movement)

{AUbn} = (AUan} + (_n}

(_t Vat} = ( A Vbt }

{ARan} = -{ARbn }

(ARat) = -{ARbt )

(3)

(4)

(3) For closed and sliding nodes (tangential movement)

(AVbn) -- (AUan) + ($n}

{ARbn = -(ARan ) (5)

(ARbt) = -(ARat ) = -t- p (ARan)

where {6n} is the normal "gap" vector between contacting nodes and # is the coefficient of friction

between the surfaces. (Coulomb friction is assumed and the sign in the final terms of equation (4) is
chosen so that energy is dissipated.)

To use the constraint conditions of equations (3) to (5) with the governing equations, it is useful to

transform the columns and rows, which are associated with the contacting node pairs, from the global

(x,y) system to the local (n,t) system. Let {AF} and {AU} represent the incremental load and

displacement vectors in the local system, and let [T] be the (orthogonal) transformation matrix from the
local to the global system. Then

(AF} = [T]{AF}

and (6)
(AU) = [T](AI3)



By substitutingequations(6) into equation(2), weobtaintherelation

{AF} = [T]T[K][T]{A0} = [I_]{A0}

where the stiffness matrix [I_] is defined by inspection.

a.g

(T)

By assembling together the terms associated with the contacting nodes, equation (7) can be expressed

AF a

AFan + ARan

AFat + ARat

AFbn + ARbn

AFbt + ARbt

AF b

=

AU a

AUan

AUat

AUbn

AUbt

AU b

(8)

Equation (8) is then the matrix form of the force-displacement relations. To obtain the complete set

of governing equations, it is necessary to impose the contacting boundary constraints of equations (3)

to (5) for the three contact conditions: open nodes (no contact), closed and sticking nodes (no relative

movement), and closed and sliding nodes (tangential movement).

Open nodes (no contact).--In this case no constraints are needed. However, equations (3) need to be

satisfied during each numerical iteration for which any matching node pairs are deemed to be open.

Closed and sticking nodes (no relative movement).--In this case equations (4) are constraining rela-

tions that need to be satisfied. After substitution from equations (4), equations (8) take the form

AF a

AFan + ARan

AFat + ARat

AFbn - ARan

AFbt - ARat

AF b

AU a

AUan

AUat

AU_n + 6_

AUat

AU b

(9)

Equation (9) can be reduced by eliminating the unknown contact forces {ARan } and {ARat }. To this

end, we introduce rectangular transformation matrices [S1] and [Sz] defined as
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[Sl] =

IaO0

oI_o

ol
I

° I
OOIcOI

I
I

OIcO 0 I

OOIcO [

O001b]

and IS2}--

0000

0000

0000

0_00

0000

0000

(lO)

where Ia is an identity matrix with dimensions equal to the number of degrees of freedom of the nodes

of body a less the number of degrees of freedom of the contact nodes, Ib is the corresponding identity

matrix for body b, and I¢ is an identity matrix with dimensions equal to the number of degrees of free-
dom of the contact nodes. For example, if a finite element model has 40 nodes for each of bodies a and

b and if there are 5 contact node pairs, then Ia has dimensions (40 - 5) × 2 = 70, Ib has dimensions
(40 - 5) × 2 _- 70, and Ic has dimensions 5 × 2 = 10. Observe that these matrices have properties such
that

AU a

AUan

AUat

AUan +

AUat

AUbt

° Is1}

AU a

AU_

AUat

AU b

+ [s_]

0

0

0

(11)

and

AF a

AFan + AFbn

AFar + /_AFbt

AF b

AF a

AFan + ARan

AFar + ARat

AFbn - ARan

AFbt - ARat

AF b

(12)



Premultiplying equation (9) by [S1] T and substituting from equation (11) gives the reduced system

AF a

hFan + AFbn

AFat + AFbt

AF b

0

t

[S ]T[KI[S I n- 1 2 = [SllT[I_] [Sl]

I'

i AU a

AUan

AUat

AU b

(13)

Closed and sliding nodes (tangential movement).--In this case equations (5) are constraining relations

that need to be satisfied. After substitution from equations (5), equations (8) take the form

AF a

AFan + ARan

AFat ± #ARan

AFbn- ARan

AFbt =F #ARan

AF b

AU a

AUan

AUat

AU_ + Q

AUbt

AU b

(14)

By following a similar procedure to that of case (2), equations (14) can be reduced to the form

AF a

AFan + AFbn

AFat _= #AFar -

AFbt + #AFan

AF b

[Q3] [I_ ][q2] = [q3][ I_ ][Q1]
0

0

AU a

'AUan

AUat

AUbt

AU b

(15)



where [ql],[Q2],and [q3] are transformationmatricesdefinedas

[QI]--
x!0Ic

Ic

l:°0

0 0

0 0

0 0

Ic 0

0 Ib

[Q21--

D 0 0 0

O 0 0 0

D 0 0 0

D Ic 0 0

D 0 0 0

0 0 0 0

,and[%]=

la 0 0 0 0 0

0 Ic 0 Ic 0 0

0 q:#I c Ic 0 0 0

0 +#I c 0 0 Ic 0

0 0 0 0 0 Ib

(16)

Observe that in this case the stiffness matrix [Q3][i_][Q1 ] is not symmetric. The dissymmetry is due

to the Coulomb friction forces. The ± and q: signs are chosen to dissipate energy because the work due

to friction forces is negative.

The governing equations, equations (8), (13), and (15), can be solved for the incremental displace-

ments {AUan}, {AUat}, {AUb} , and {AUbt }. Then by backsubstitution the incremental forces

{ARan}, {ARat}, {ARb} , and {ARbt } can be obtained. However, at each incremental load the assumed
contact conditions must be checked and adjusted, if necessary. Table I lists the contact region criteria

and the transition boundaries. Iterations must be performed at each increment until convergence between
assumed and calculated contact and frictional conditions is obtained.

AUTOMATION OF METHOD

The analysis method is based upon the assumption that the size of the load increments is sufficiently

small that there is a linear load-displacement relationship and also that there is no more than one change
of contact condition or phase in any load step. An algorithm to automatically limit the size of the load

increment can be developed by studying the transitions between contact phases. The procedure is based

upon an evaluation of the amount of load increment needed to reach a phase boundary. This "amount"
is measured in terms of "scale factors."

The development proceeds as follows: First, we categorize the contact phase change as being either

(1) from open to contact or (2) from contact to open. Next, within the contact region we categorize

phase change as being either (3) from sticking to sliding or (4) from sliding to sticking.

From open to contact.iSuppose a load increment {AF} causesan open pairofcontactnodes,say a

and b, to come intocontactand even pass each other (analytically).Then, due to the assumed linearity,

the proportion al{AF ) of the load increment needed to exactlyclosethe gap distance 6 can be deter-

mined. Specifically,letthe relativedisplacementof a and b in the directionn, normal to the surface,

due to {AF}I be AUan - AUbn. Then the scalefactor aI needed to closethe gap without penetra-
tionisdetermined by the relation

O_l(AUan - AUbn ) = _ (17a)



or

= - AUbn) (17b)

From contactto open.--Ifthe normal force R n between two contactingnodes a and b becomes a

tensileforce,the surfaceswillseparate.If AR n isthe normal load incrementduring separation,in a

typicaliterationstep,the proportion a2 AR n ofthe load increment needed to exactlyreach the transi-
tionbetween contactand separationisgiven by the relation

Rn + a2 ARn = 0 or az = -Rn/AR n (18)

where a 2 is the scale factor.

From sticking to sliding contact.--From Coulomb's law of sliding with friction there will be a transi-

tion between sticking and sliding at a contacting node pair when the tangential force R t exceeds #Rn,

where # is the friction coefficient and where, as before, R n is the normal force. Let ARt and AR n
be increments in the tangential and normal contact forces due to a load increment (AF). If the load

increment is sufficiently small, ARt and AR n are proportional to the magnitude of (AF) and hence

proportional to each other. Then the proportions a 3 ARt and a 3 AR n of the tangential and normal
force increments needed to reach the transition between sticking and sliding are given by the expression

:l:(Rt + a3 aRt) = #(R n + a3 ARn) (19)

where the sign is positive if R t AR n _ Rn ARt and negative otherwise. Hence, the scale factor a 3 is

and

R t - _AR n
a3 = - for R t AR n _ R n ARt (20)

aR t - p AR n

R t + # AR n
a3 = - for R t AR n > R n AR t (21)

ARt + p ARn

Note that the static (stick condition) friction coefficient is generally slightly higher than the dynamic

(sliding) friction coefficient. This difference has been neglected in this analysis.

From sliding to stick contact.--It is difficult to establish and calculate a load scale factor for the

transition from sliding to sticking contact. Therefore, for this case we simply assume all sliding nodes are

sticking as a new load increment is applied. Then, we examine the sliding/sticking character of the con-

tacting nodes: If they are sliding, no status change has occurred. However_ if they are sticking (indi-

cating a status change), the load increment must be reduced to establish the location and loading of the
phase change.

After the scale factors al,_2,a 3 are determined for each case, for all contacting node pairs, the mini-
mum of these (designated a) is selected as the global load scale factor. That is, the load increment

(AF) is reduced to a(AF) and the process is repeated.

9



Whenfriction is presentandwherethereis a tentativephasechangefrom stickingto sliding,the
accuracyof the incrementalprocedurecanbeimprovedby monitoringthefriction forces Rt. Specifically,
slidingwill occurwhen Rt approaches_Rn. Hence,anadditionaliterationcriterioncanbeestablished
by requiring Rt to satisfytherelation

(1 - e)_uRn < Rt < #Rn (0 < e _<1) (22)

where e is an accuracy parameter.

Figure 3 shows a flow chart outlining the steps of the procedure.

VALIDATION: CONTACT BETWEEN IDENTICAL INFINITE CYLINDERS

A computer code was written to execute the foregoing algorithm. To validate the algorithm and the

code, we first considered the contact between two semicylinders as depicted in figure 4. The semicylin-

ders are geometrically identical, but they were given different elastic properties to investigate and illu-

strate the effect of elasticity upon the contact mechanics. They each have radius R a = R b -- 1.0 inch
and infinite length. Their elastic moduli and Poisson ratios are

E a = 3.0x107 psi (steel)

E b = 1.8x107 psi (beryllium copper)

va = 0.292

v b = 0.285

(23)

The c]linders were aligned with parallel axes and pressed together by a uniform distributed load p of

5xl0Opsi, as depicted in figure 4. Figure 5 shows the finite element mesh for the semicylinders. The

mesh is very fine in the contact region. It has a total of 412 nodes and 364 linear quadrilateral plane
strain elements. Three contact conditions were examined: Frictionless contact_ friction contact without
sliding, and friction contact with sliding.

Frictionless contact.--Figure 6 shows the resulting stress distribution for frictionless contact. The

horizontal and vertical normal stresses and the maximum shear stresses are plotted along the vertical axis

of symmetry. The stresses are measured in multiples of the maximum normal contact pressure P0 of the
Hertz theory. Comparisons with the classical Hertz solution (ref. 9) are also given.

Figure 7 shows the distribution of normal stress in the contact area and also a comparison with the
Hertz solution, where a is the semilength of contact of the Hertz solution. The contact area determined

by the finite element solution is approximate in that the boundary between the contact and open regions

lies between the closed and open node pairs. The boundary position can be estimated by interpretation.

Table II presents a comparison of the numerical results and the Hertz results for the maximum con-

tact pressure, the maximum shear stress, and the semilength of the contact.

10



Friction contact without sliding.--To determine the effects of friction, the stresses were calculated

with friction coefficients # of 0.0, 0.06, 0.12, and oo. Figure 8 shows the results for the contact forces

on the upper and lower cylinders. Figure 9 shows detailed representations for portions of the normal and

tangential contact forces. Observe in figure 9(a) that the maximum normal contact forces increase with

the friction coefficient. However, there is relatively little increase once the coefficient exceeds 0.12.

Observe also that the normal contact forces decrease slightly in the edge region when the friction coef-
ficient increases.

Finally, table III shows the results for the semilength of the contact. As expected, the length
decreases as the friction coefficient increases.

Friction contact with sliding.--To determine the effect of friction when there is slipping or sliding

between contacting nodes, let the upper cylinder of figure 4 rotate counterclockwise relative to the lower

cylinder. Figures 10 and 11 show the resulting maximum compressive (principal) stresses and maximum
shear stresses on the upper cylinder in the contact area for various friction coefficients. Analogous and

similar results were obtained for the lower cylinder.

CONTACT STRESSES BETWEEN SPUR GEAR TEETH

Consider a pair of identical spur gear teeth in contact with each other at their pitch points. Let the
teeth be modeled as in figure 12 with the tooth on the right being the driving tooth. Let the teeth have

a fillet radius of 0.045 inch, a face width of 0.25 inch, and a pressure angle of 20 °. Let the teeth be ele-

ments of gears with a diametrical pitch of 8.0 and with 28 teeth per gear. Let the elastic modulus be

30x106 psi with a Poisson's ratio of 0.3. Let the driving gear have a clockwise torque of 50 000 in.-lb.

The stresses were calculated for the same friction cases as before.

Frictionless contact.--Figure 13 shows stress contour results for the maximum compressive (principal)
stresses and for the maximum shear stresses. The maximum contact pressure was found to be 8.11 x l0 s

psi, which is approximately 10 percent higher than that predicted by the Hertz method (ref. 10):

Friction contact without sliding.--Figure 14 shows the distribution of normal and tangential contact

forces for the driving gear for four friction coefficients: 0, 0.05, 0.10, and oo. Analogous results were
obtained for the driven gear.

Friction contact with slidin_.--Figure 15 shows the maximum compressive (principal) stress and

maximum shear stress distributions in the contact region for the driving gear tooth. Analogous results
were obtained for the driven gear.

DISCUSSION

The results demonstrate the feasibility and the practicality of using the finite element method for gear

stress calculations. Success in obtaining reliable results, however, is dependent upon the incrementation
of the load to establish the extent of the contact area, which is unknown at the start of the problem.

Because the contact region boundaries are unknown, they must be determined iteratively. These

boundaries are more sensitive to the loading than are the stresses. This is seen in table II, where the dif-

ference in the stresses between the Hertz and finite element analyses is much less than the difference in

11



the contact region. The sensitivity of the contact region arises from the near-parMlel surfaces of the con-
tacting bodies in the contact region.

The inclusion of friction effects creates an additional complexity in the analysis. Indeed, friction pro-
duces a dissymmetry in the stiffness matrix that significantly increases the computational effort. The

computational effort was reduced by treating the friction forces as known external tangential forces that
are determined from the previous iteration step.

The results also show that friction produces higher stress in the contact region than when friction is

absent. This means that precise surface geometry, polished surfaces, and lubrication can significantly
reduce the stresses and thus increase surface life.

The gear stress analysis is not comprehensive but only representative and illustrative of spur gear

tooth stresses. The analysis is conducted for pitch point contact where there is no sliding due to gear

kinematics. This means that an assumption of frictionless contact at the pitch point is very reasonable.

Indeed, figures 14 and 15 show that friction has a relatively small effect on the analysis.

Plane strain finite elements were used for the analysis presented in this paper. Plane strain is most

suitable for very thick bodies such as the infinitely long cylinders used to compare the analysis with Hertz
theory. For gear teeth, plane stress finite elements may be more appropriate, especially for narrow-face-

width gears. Finally, the analysis assumes either static or sliding contact, whereas the contact between

gear teeth in service is divided between sliding and rolling phases. Hence, more study is needed to obtain
a comprehensive stress analysis.

CONCLUDING REMARKS

An incremental finite element procedure has been investigated for the analysis of contact stresses with
application to meshing spur gears. The following conclusions have been reached:

1. The feasibility and practicality of the procedure were established through several examples and by
favorable comparison of results with those of the classical Hertz method.

2. Because the contact area is not known a priori, it was necessary to employ an iterative procedure

(herein called the load incremental procedure) to simultaneously determine the stresses and the contact
area.

3. The presence of friction between contacting surfaces increases the contact stress. This in turn

means that precise surface geometry, polished surfaces, and effective lubrication can reduce contact
stresses and thus increase surface life.

4. The method is directly applicable to gear stress calculations. However, more analyses are needed to
obtain a comprehensive understanding of contact mechanics throughout a mesh cycle.
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TABLE I.--CONTACT CRITERIA AND

TRANSITION BOUNDARIES

Condition

Before After

Open Open

Close

Stick Stick

Open

Sliding

Sliding Stick

Open

Sliding

Criterion

{AUbn - AUan ) - 6n > 0

(AUbn -- AUan ) - 6n < 0

Ran __ 0, IRa,t < ulRa. I

Ran < 0

Ran > 0, ]Rat[ _> _IR.ni

Ran > 0, ARat(AUat - AUbt ) > 0

Ran < 0

R_n _> 0, AR_,(AU_t - AUbt ) _<0

TABLE II.--COMPARISON OF RESULTS OF FEM AND HERTZ

FEM Hertz Error,

method percent

Maximum contact

pressure, Po, ksi

Maximum shear stress,

rmax, ksi

Semihngth of contact,

a, in.

19.33

5.536

.01732

19.76

5.928

.01611

-2.20

-2.60

7.51

TABLEIII.--FRICTION

COEFFICIENT AND

SEMILENGTH OF

CONTACT

Friction Semilength

coefficient, of contact,

in.

0 0.01732

.06 .01730

.12 .01729

m .01727
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Figure 1 .--Two typical bodies In contact.

C =

Rbn

,,  Fbt'ubt/
_/_ Fbn' Ubn /

Figure 2.--Pairs of typical contact forces.
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1
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1

I
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Figure 3.--Flow chart for load Incrementation Iteration.
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Figure 6.--Subsurface stresses along axis of symmetry. (Stress
values are normalized by P0, the maximum normal contact
pressure.)
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Figure 8.--Distribution of contact forces.
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Figure 9.--Detailed representation of forces.
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Figure12..--SpurgearteethIncontactatpitchpoint.
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